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Group theoretical methods are developed to determine in a generalised format 
for an f "  ion in a crystal field environment of icosahedral symmetry, the effect 
on the energy level scheme when a crystal field distortion is considered parallel 
to any direction. As an illustration, the effect on the g-tensor components are 
examined as a function of the magnitude and the direction of the crystal field 
distortion. All appropriate reduced matrix elements in group theoretical 
terminology are evaluated for the f " - ion  ground states. Specific results are 
given for thef3- ion case and compared with electron paramagnetic resonance, 
optical, and magnetic susceptibility data. 
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1. Introduction 

Often in the interpretation of  e.p.r, and magnetic susceptibility data, for a specific 
f"-system the f" - ion  is assumed to be in an environment defined by a low symmetry 
crystal field potential expressed as a series of  spherical harmonics with a number 
of  unknown parameters. 

The parameters are adjusted to reflect the experimental results but usually the 
solution is not unique. Another approach is to examine the data assuming the 
crystal field environment is close to octahedral or icosahedral symmetry. By 
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commencing with a high symmetry and then applying a small distortion a 
generalised approach using group theoretical methods is possible. This approach 
enables a quick analysis of the experimental data and indicates if there is a need 
for more detailed analysis. In this paper we develop a group theoretical method 
which generalises the g-tensor for fn systems in a crystal field environment of 
approximately icosahedral symmetry. 

The idea of using icosahedral symmetry in handling f"-systems was first suggested 
by Judd [1], who discussed the possibility that the appropriate symmetry in the 
rare-earth double nitrates, was predominantly that of the icosahedral group which 
is, to a small extent, modified to the symmetry of its subgroup C3v. Judd based 
his assumption on the relationships found for the crystal field parameters rather 
than on the detailed structure of these compounds. 

He found that the last three terms in the C3~ crystal field hamiltonian 

= A ~  2 - r 2) + Aa~ 4 -  3 0 r 2 z  2 + 3 r 4) 

+ A 3 4 z ( x  3 - 3 x y  2 ) + A~ z 6 - 315 r2z 4 + 105 r4z 2 - 5 r 6) 

+ A36(11 z 3 - -  3 z r 2 ) ( x  3 -- 3xy 2) 

q- A 6 ( x  6 - 15x4y 2 + 15x2y 4 -  y6) (1) 

were major interactions whose ratios were quite close to those found for a crystal 
field of icosahedral symmetry i.e. 

3 0 A 6 / A  6 -~ + 14x/5, 6 0 A 6 /  A 6 = 14. 

The other terms played a much smaller role. More recent studies [2-5] by X-ray 
analysis have shown a number of lanthanide and actinide compounds with 
symmetry close to icosahedral symmetry. Indeed, the deviations from icosahedral 
symmetry of the cerium compound described by Dexter and Silverton [4] are 
smaller than the deviations often neglected when studying compounds with 
octahedral symmetry. 

2. Theory 

The crystal field hamiltonian of icosahedral symmetry may be expressed as 

if(= Y60(l~, t ~ ) - 7 - [ Y 6 5 (  O, q~)-t- Y6-5(O, q~)] 6 l x / ~ / ~ A  
35 

(2) 

where A is the appropriate crystal field parameter such that when spin-orbit 
coupling is neglected, the splitting of the fl_system by the crystal field is A. The 
crystal field hamiltonian given by (2) defines the z-axis along the fivefold axis 
and is the appropriate form for use in group theory methodology. Nevertheless, 
Eq. (2) may be rotated so that the z-axis is parallel to a threefold axis, and this 
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yields the following Hamiltonian: 

D(0, - t~ ,  - ~ / 2 ) ~  = 
f 
~[ [ Y63(0, 6) - v6_~(0, a] 9 Y6o(O, ~b) 

[Y66(0, 6 ) +  Y6-6(0, 6) ] /  
6 ~ / ~ / ~  

4 ~  J 35 
where 

~1+ 2 "~ '/2 
/33:c~ t3 3-~J 
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(3) 

Similarly, choosing the z-axis along a two-fold axis yields the following Hamil- 
tonian. 

D(0, -/32, - r  =-]--~- ~ Y60(O, (~) "~---~-'- [ Y62(0, (~) -~- Y6_2(0, ~/~)] 

--7 [Y64(O , r Y6_4(0, q~)] 
2 

2 ~  [ 66(8' (~) + Y6-6(O' 35 (4) 

where /32=�89 -~ (-1/4c5) and D(a,/3, y) is the rotation operator defined in 
Ref. [6]. 

One method for examining a distortion from icosahedral symmetry is to consider 
a crystal field distortion component, expressed in terms of spherical harmonics, 
as 

c,~= a2Y2o(O, 6 ) +  a4Y4o(O, q~)+ a6 Y6o(O, ~b). (5) 

To examine the effect of this distortion it is first necessary to determine the 
eigenfunctions, for a specific f"  case, of Eqs. (2), (3) or (4), depending on whether 
the distortion is to be considered parallel to a five, three or twofold axis respec- 
tively. 

To generalise the calculations by using group theoretical symmetry coupling 
coefficients [7] it is necessary to define that the z-axis is parallel to the fivefold 
axis and consider the crystal field distortion component at a general angle to the 
axis system defined by Eq. (2). 

Note that in dealing with even J-values, in which only the case where 7 = 0 need 
be considered, account must be taken of terms given in the expression 

D( a, /3, O) Yjo( O, 4)) = Cj( Aa)[Aa) + Cj( UK ) I UK ) + C*( UK)[ Uv) 

+ G(u,~)l u,~)+ c*(  u~)l u/z) 

+ G ( V2)l v2) + c*(  v2)l v -  2) 

+Cj(V1)IV1)+C*(V1)IV-1)+Cj(VO)IVO) (6) 

where C*(Fa) is the complex conjugate of Cj(Fa). 
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The crystal field distortion matrix elements may be generalised using 

where the V-coefficients are defined in Ref. [7]. 

In this paper, the general expressions for the matrix elements ( W ' a ' l ~ , l  W'b') 
and ' ' J ' ' < c a I~DI u b >, where 

~(~ = ajD(a, fl, O)Yjo(O, (a), (8) 

are determined and given in Appendix A. In Appendix A the reduced matrix 
elements for a specific J-term in Eq. (7) are defined as follows: 

(W'IIAILW')= Kj ; 

( W'[I2 VII W')= A~: 

( W'[[4 VII W')= B~ ; 

(W'I[4UIIW')= Ej 

(U'[ IAIIU') = K'j 

(u'112 vl I u ' )  = D~. 

(9) 

The Cj(Fa)  coefficients are given in Appendix B. 

The reduced matrix elements (9) may be determined by equating the appropriate 
matrix elements for a specific J-value of (8) for each J '  in the 2S+tLj, l~vel for 
the 2S+tLj, term of a general f f  configuration. These J '-values range from -~ to 
~. The results for J = 2, 4 and 6 are given in Appendix A(c) and A(d). Knowledge 
of these coefficients provides a very convenient method for determining the 
eigenvalues and eigenfunctions for the crystal field distortion along any axis. 

Once the effect of the generalised form of the crystal field interaction on the 
energy level scheme is known, a range of properties may be readily calculated. 
Let us examine the dependence of the g-tensor on the crystal field environment. 
The W' level is split into three doublets and the U'-level into two doublets; the 
energy separation of these doublets depends on the angles a and/3 and the a2, a4 and 
a 6 values in Eq. (8). To determine the g-values of these doublets, an applied 
magnetic field interaction, B, is considered. When calculating the g-tensor 
components, it is more appropriate to define 

Bx,= D(a,/3, 0)Bx = cos a cos/3Bx + sin a cos BBy -sin/3B~ 

By,= D(a, fi, O) By = - s in  aB:, + cos aBy 

B~, = D(a,/3, O)B~ = cos a sin/3B,, + sin a sin flBy+COS/3Bz 

where the z'-axis is parallel to the crystal field distortion axis. Since the magnetic 
field transforms as TI the magnetic field interaction may be expressed in terms 
of the reduced matrix elements, (FtlIT~I 1['2). Here only the case where F~ = F2 is 
considered. 
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Since 

[J'ra) = E C(J'MFa)IJ'M) 
M 

(J'Fa[Lz + 2S~IJ'Fa) = g) • ]C(J'MFa)I2M 
M 

therefore, the reduced matrix elements follow from the equation, 

<rl fs'r,f Iv> = gs, Z [C(J'MFa)[ 2M. 2,,(-1)r-av - ( a )  a (lO) 

The complete list of the magnetic field interaction matrix elements in terms of 
the direction cosines 1, m and n and the reduced matrix elements are given in 
Appendix C. 

From the knowledge of these reduced matrix elements the g-tensor may readily 
be determined for any 2S+JLs, level where t h e f t  ion is in a crystal field environment 
of predominantly icosahedral symmetry, with a distortion component given by 
Eq. (8) at any specific direction. A few examples are given in the next section. 

Further, for the case in which the f "  system is in a crystal field environment of 
exact icosahedral symmetry, the e.p.r, spectrum expected for W '  and U' levels 
may be derived from the generalised form of the magnetic field interaction within 
these levels. Using the axis system defined by the crystal field interaction given 
by the Hamiltonian (2), the energies and the intensities of the transitions can be 
determined, in general terms, when the applied magnetic field is parallel to the 
x, y and z directions. For the U'-level, the e.p.r, spectrum is a single isotropic 
line, where 

=l_<  gxx=gYY=g= x/15 U'[[TI]IU')" (11) 

The results for the W'-level are not so simple; the transitions are set out in detail 
below. 

(a) Applied magnetic field parallel to the x-axis 
Transitions i ~ j  (i,j= 1, 2 and 3) parallel to the y-axis 

Energy difference = ]ei + efllxBB. 
/ X 

Relative intensity = ~ (ai/?j +/3iaj) ~ + (fliYj + Yflj ) 

2a b ~43a+ b ~ 2  

Transitions i ~ j  (i,j= l, 2 and 3) parallel to the z-axis 

Energy difference = leg + eil~BB. 
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{ [ [ -" /5a+- ' -~b ~5~/~j (10aa+2~/-5ab-24bZ)x z Relative intensity = a,aj ,,/-4"2 + 

• b ~ _ a + 4 2 b ] ) ]  a 
I - ~  - ~ l  + ~',~,~ { ,/?-i-d ,/-FiJ I 

t 5 4 6 J  x ~ 

• ~,,/3a+ b ~ a +~/2/1~/2 

(b) Applied magnetic field parallel to the y-axis 
Transitions i ~ j  (i, j = 1, 2 and 3) parallel to the x-axis 

Energy difference = l el + ejllznB. 

intensity = { (ai/3j +/3i%) 
X 

Relative 

fx/3a b ] ]2  

Transitions i~ j ( i ,  j = 1, 2 and 3) parallel to the z-axis 

Energy difference = ]e~ - ejltzsB. 
2 2 . , w t 2  

Relative intensity = a i ~j / o [60a 2 + 54"5ab - 25 b2] 2. 
1 5 0 X  4 

Energy difference = l ei + ejI~BB. 

= I. otiotj {_50~a3_40a2b+ 220,J-~abZ + 2563} Relative intensity [5, , /~X2 

a 

(c) Applied magnetic field parallel to the z-axis 
Transitions perpendicular to the z-axis 

Energy difference = IE1 - EEItZnB. 

Relative intensity= 2 (p  ~_~a +___~b ~ +--t"/7b\ 2 
[,/~ 2,/2--i-dJ : ,$6)  

Energy difference = [El + E2[~B. 

Relative intensity = 2 (p  ~/7b [ a b ],~ 2 , ) �9 

Energy difference = I E 2  - E3Itx~B. 



Environment of approximately icosahedral symmetry 163 

Relative intensity = 2 ( - ~ - - ~ + 2 - ~  " 2 a  b ~ 2 

Energy difference = [2E31/xBB. 

. { v r 3 a  b \2 
Relative intensity = ~ - ~ +  ~ - ~ )  . 

e~ and ej are the eigenvalues with the corresponding eigenfunctions ~b~ and 4~ 
(t~h = Ofh(~l "71-/~h~2-~ 7hq~3) o f  the following matrix: 

~)2 

4~3 
where 

o x / 2 G ~  o 

X/2~-f-~ 0 -2a/~lO5+b/24-2-{ 
0 -2a/~l-~+b/2~2-{ (3a/4-~+b/(-4-2 

X = {lOa2+2,,/5ab + 25b 2} 

a=(W'IIT11IW'), b=(W'[15T~[[W' ) 
[{  ,/-5a b ]2 7b2] '/2 

~= - ~ + 5 - ~  +~-~-~J 
G~ b 

e2: ,/N , /~ 

a ~/2b 

o~=~+{ ~-Sa b ] 1  

1 t~=~ { G~ b I 1  
-- -- ~-~2 71- 5 ~ / 2  El 

and pt = ~-7b/(10~-6El). 

Except when the applied field is parallel to the y-axis and the transitions are 
parallel to the z-axis, the sum of the intensities is proportional to (a2+ b2)/6. In 
the case of the exception, when half the intensity of the zero transition is added 
the sum is also proportional to (a2+b2)/6. 

In general the e.p.r, results are complex and not isotropic; specific cases are 
examined in the next section. 

3. Results and discussion 

If the crystal field environment has exact icosahedral symmetry, a number of 
e.p.r, transitions are al]owed within the sixfo]d degenerate W' state. The situation, 
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w h i c h  t h e n  b e c o m e s  r a t h e r  c o m p l e x ,  is i l l u s t r a t ed  by  two  e x a m p l e s ,  the  J = 7 a n d  

J =-92 cases.  In  Tab le s  1 a n d  2, the  e x p e c t e d  e n e r g y  a n d  its c o r r e s p o n d i n g  re l a t ive  

in tens i ty  a re  g i v e n  fo r  the  case  w h e n  the  a p p l i e d  m a g n e t i c  f ield is a l o n g  the  x, y 

a n d  z axes  a n d  the  exc i t i ng  f ield is p e r p e n d i c u l a r  to these  axes.  

Tab le s  1 a n d  2 i l lus t ra te  t he  in t e re s t ing  resu l t  t ha t  t he  e.p.r,  s p e c t r u m  is a n i s o t r o p i c  

a n d  in g e n e r a l  u p  to  14 t r ans i t i ons  occur .  H e n c e  this  s ix fo ld  d e g e n e r a t e  leve l  is 

the  o n l y  l eve l  w h i c h  y ie lds  an  a n i s o t r o p i c  e.p.r ,  s p e c t r u m  w h e n  the  crys ta l  f ield 

Table 1. The allowed e.p.r, transitions and their relative intensities for an f"  ion in a crystal field 
environment of icosahedral symmetry, with a J = ~- ground state 

Applied field x-axis y-axis z-axis 
transitions y-axis z-axis z-axis x-axis x & y axes 

Energy (gj~B) 
5.2426 0.8217 0.6577 0.6250 0.8217 
4.5000 
4.2426 0.3815 
3.6213 0.2095 0.5156 0.0686 0.2095 
3.2426 0.9318 1.9496 0.8378 0.9318 
2.6213 2.6050 
2.5000 
2.0000 4.2388 1.6955 0.1696 4.2388 
1.6213 0.4469 
1.0000 2.2500 1.3235 0.9420 2.2500 
0.6213 2.0483 4.3582 1.7532 2.0483 
0.5000 
0.0000 5.3408 

1.8000 

2.2500 

4.0000 

2.4500 

Table 2. The allowed e.p.r, transitions and their relative intensities for an f "  ion in a crystal field 
environment of icosahedral symmetry, with a J = ~ ground state 

Applied field x-axis y-axis z-axis 
transitions y-axis z-axis z-axis x-axis x & y axes 

Energy (gj~BB) 
6.2000 0.4900 
5.9391 0.3464 0.6093 0.4097 0.3464 
5.6785 0.5284 
5.4180 0.9282 0.3586 0.0090 0.9282 
3.8000 5.7600 
3.4090 5.1634 6.8620 6.3032 5.1634 
3.2000 1.2800 
3.1484 0.7394 
2.5301 0.5588 
2.2696 8.4079 5.9145 5.1751 8.4079 
1.8000 8.8200 
0.8789 1.1555 1.8276 1.4366 1.1555 
0.2606 0.3487 0.7780 0.2496 0.3487 
0.0000 1.8804 
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environment for an fn- ion is of octahedral or of  higher symmetry. Therefore, if 
the e.p.r, spectrum for an fn-ion is anisotropic it does not rule out the possibility 
that the crystal field environment may be of icosahedral or very nearly icosahedral 
symmetry. We shall explore next the effect on the system by calculating the e.p.r. 
spectrum when a crystal field distortion of the form given by Eq. (5) is added to 
the crystal field potential of icosahedral symmetry. 

Here we shall neglect, as a first approximation, the crystal field distortion interac- 
tion between the various energy levels and confine our analysis to the effect of 
the distortion on the icosahedral W'-level. The crystal field distortion matrix 
element of  the form given by Eq. (5), where the distortion axis given in Eq. (5) 
may be at any angle to the icosahedral axis system - the angles a and/3 of Eq. 
(6) define this d i r ec t ion-a re  given in Appendix A(a). The Cj(Fa)  coefficients 
are given in Appendix B for a specific J-value and the angles a and/3. The four 
reduced matrix elements A j, B~, Ej, and Kj are given in Appendix A(c). The 
eigenvalues of the 6 •  crystal field distortion matrix yield three twofold 
degenerate levels. From the eigenfunctions of the matrix the e.p.r, spectrum 
may be determined using the magnetic field interaction matrix elements given in 
Appendix C. 

To illustrate the variation of the principal g-values for the three W'-doublets as 
the direction of the crystal field distortion changes we hav~ chosen J = 9, a = 7r/2 
and varied /3 for the Y2o(| &) and Y6o(O, ~b) component of (5). The angular 
dependence of the three principal g-values in units of gj for the three W'-doublets 
for the Y2o(| ~b) component of (5) are shown in Fig. 1. 

In Fig. 1, there is a fivefold axis at / 3=0  ~ and 116.5651 ~ a threefold axis at 
/3 = 37.7774 ~ and 79.1876 ~ and a twofold axis at 13 = 58.2825 ~ and 148.2825 ~ It 
will be seen that in general the three principal g-values are anisotropic for each 
doublet. Along the fivefold and threefold axes, the g-tensor for each doublet is 
axially symmetric. This is usual for the distortion Hamiltonian of the form given 
by Eq. (5) and Fig. 2 illustrates the case for the three W' doublets for the Y6o(O, &) 
component of  (5). 

In addition, the g-values are very dependent on angle and very small changes 
in 13 may have a very significant effect on the results. This is particularly noticeable 
near the threefold axis in Fig. 1. For other J'-values this marked angular 
dependence near the threefold axis is even more pronounced. It is noted th.at for 
a specific doublet there are other possible /3 angles which yield an axially 
symmetric g-tensor and, in some cases, the g-tensor is very nearly isotropic. 
Further information is provided in Tables 3 and 4 which give the major g-values 
at the principal rotation axes when each of the distortion components is considered 
separately. In all cases, the z direction is taken to be parallel to the rotation axis 
of interest. The distortion parameters a2, a4, and a 6 were taken as being positive, 
and sufficiently large to regard the doublets as isolated Kramers doublets. From 
Tables 3 and 4, and for all other cases, when the distortion is along the fivefold 
axis the g-values of the three doublets for each Yjo(O, 4~) distortion operator are 
the same but the relative separation of the doublets are different. (For the J = 7 
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Fig. 1. The variation of the principal g-values when the direction of the Y~o(O, 4~) componen~ is 
changed by the angle/3 

case - Table 3 - the degeneracy of the W'-level is not lifted completely to yield 
the three doublets by the I"6o(0, ~b) distortion component.)  In contrast when the 
distortion is along the threefold axis only one of the Kramers doublets for the 
three separate distortion operators has the same principal g-values and when the 
distortion is along the twofold axis all the Kramers doublets have different 
principal g-values. 

We shall examine next the experimental e;p.r, data for Nd 3§ in the double nitrate, 
Nd2Mg3(NO3)12.24H20, an f3 ion with a 419/2 ground state. In their analysis of  
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Fig. 2. The variation of the principal g-values when the direction of the Y6o(O, ~b) component is 
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the experimental data for the neodymium compound, Earney et al. [8] found 
wavefunctions which satisfactorily explained the e.p.r, and optical data, but not 
the magnetic susceptibility data. They assumed that the distortion from icosahe- 
dral symmetry was parallel to a threefold axis. The g-value results given by 
Earney et al. [8] are: the ground state Kramers doublet gfl =0.39 and g• = 2.70; 
the other doublet 33 cm -~ above the ground state gll = 3.4 and g• = 0. 

These results may be interpreted as arising from a distortion given by Eq. (5) 
from icosahedral symmetry along the threefold axis where the W' level is split 
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Table 3. The principal g values along the various rotation axes, when the distortion components are 
considered separately, for J = 7 

5-fold axis 3-fold axis 2-fold axis 

Energy g~(gyy) g~z Energy gxx(gyy) g~ Energy gxx gyy gzz 

a2 Y2o(O, 6)  
0.138 0 4 
0.035 0 5 

-0.173 4 1 

a4 Y40(O , ~b) 
0.121 4 1 
0.054 0 4 

-0.175 0 5 

a6 Y6o(O , ~b) 
0.058 0 4 

-0.085 - -  - -  
-0.085 - -  - -  

0.182 2.265 4.215 0.177 2.570 1.993 4.112 
-0.078 1.735 1.215 -0.050 1.977 4.962 1.112 
-0.104 0.000 3.000 -0.127 4.594 2.954 1.000 

0.104 1.414 4.630 0.106 2.186 1.479 3.292 
-0.040 0.000 3.000 -0.005 0.755 2.624 2.453 
-0.064 2.586 1.630 -0.101 1.059 5.145 1.745 

0.154 0 3 
-0.006 2 5 
-0.085 2 2 

0.132 2.553 0.241 2.953 
-0.011 0.553 2.241 4.047 
-0.085 2.000 2.000 3.000 

g-values in units of gs" 
Energy in units of as(7/21iYs117/2) 

Table 4. The principal g values along the various rotation axes, when the distortion components are 
considered separately, for J = 9 

5-fold axis 3-fold axis 2-fold axis 

Energy gxx(gyy) g~z Energy gxx(gyy) gzz Energy gxx gyy gz~ 

a2 Y2o( O, 6 ) 
0.125 1.4 6.2 

-0.039 0.0 5.0 
-0.086 0.0 1.4 

a4 Y4o( O , fb ) 
0.112 1.4 6.2 

-0.006 0.0 1.4 
-0.106 0.0 5.0 

a6 Y~o( O, 6 ) 
0.108 0.0 5.0 
0.035 0.0 1.4 

-0.001 1.4 6.2 

0.070 0.0 5.828 0.090 0.211 3.012 5.701 
0.057 2.817 5.077 0.033 4.526 0.442 4.734 

-0.127 4.217 0.277 -0.123 3.337 4.855 0.433 

0.069 0.0 5.828 0.110 2.420 4.022 3.955 
0.063 4.524 0.067 0.005 4.895 0.151 1.437 

-0.131 3.124 4.733 -0.115 3.875 2.773 3.991 

0.048 0.0 5.828 0.069 3.380 2.890 3.926 
-0.019 0.494 0.307 -0.043 0.728 4.929 1.265 
-0.107 0.906 5.107 -0.070 5.508 0.639 3.791 

g-values in units of gs' 
Energy in units of as(9/211Ysl19/2) 
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into three Kramers doublets. With 

a2 = 44.8/(9/211Y2] 19/2) cm -I 

a,~ = 3 9 8 . 4 / ( 9 / 2 [ [ Y 4 [  19/2) cm -1 

a 6 = 2 5 9 . 4 / ( 9 / 2 ] ] Y 6 ]  ]9/2) cm-'  

the following energy level diagram and the corresponding g-values are obtained. 

Energy (cm - t )  gll g• 

-44.98 0.392 2.768 
-11.85 3.400 0 

Another approach in examining the e.p.r, data is to choose the crystal field 
interaction Hamiltonian in the form 

= a~ Y20(| ~b) + a4 ~ Y40(O, (~) --]- a43[ Y4_3(O, (~) - -  Y43(O, ~/~)] 

+ a6~ Y60( O, 6) + a36[ Y6-3( O, 6 ) -  Y63(O, 6)] 

q - a 6 [  Y6-6( O,  6 )  + Y66( O ,  6 ) ] -  (12)  

From the experimental g data [8], the ground state wavefunction must be of the 
form 

119 ~)+ml9 ,)+ hi9 -I) 

and the first excited state of the form 

~19 9)+/319 ~)+TI 9 -~)+~l 9 -9). 

In addition, the temperature-independent term in the magnetic susceptibility has 
been given as all = 8.77 • 10 -3  c m  3 mol -~ and a j_ = 30.8 • 10 -3 c m  3 mol -~ [8]. 

By adjusting the parameters in (12), an acceptable solution yields the following 
results: 

Energy (cm -~) gll g~ % (10-3 cm3 m~ a• (10 -3 cm 3 mo1-1) 

(1) - 122.3 0.398 2.752 5.72 20.63 
-89.3 3.261 0 - 

(2) -81.5 0.398 2.752 8.57 30.94 
-59.5 3.261 0 - 

The following crystal field parameters were used for the first set of results: a ~ = 1.8, 
0 3 0 3 6 �9 an=-l.65,___.q~a-=-2.1, a6=-3 .75 ,  a6= 12.9, a6=6.6, all m units of 

(9[] Yj[[9)/~/2145. The second set of results were obtained with crystal field para- 
meters ~ of the first set values. The gj-value is 0.663 compared with 8 (0.727) for 
j=9. 

It is possible, by using a crystal field of predominantly icosahedral symmetry, to 
obtain a satisfactory theoretical account of the experimental data [8] although, 
in the final analysis, these solutions depend very much on the amount of con- 
fidence that can be placed on the experimental data. 
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The group-theoretical method enables a generalised approach in handling calcula- 
tions for f "  systems in a wide range of crystal field environments. Not only may 
the results be generalised but the work involved in calculating the required matrix 
element is simplified and reduced greatly. For example, the effect of a distortion 
component to the crystal field environment of icosahedral symmetry on the sixfold 
degenerate W'-level may be determined from only 8 different matrix elements 
for any W'-level for any f"-configuration. In this paper we have concentrated 
on showing that calculations of the e.p.r, spectra for f "  ions in crystal field 
environments of icosahedral symmetry or with a distortion component at a specific 
direction to the icosahedral axis system may readily be carried out from the 
generalised matrix elements. The results give a much greater wealth of information 
than may be determined from a single calculation for a specific f "  system in a 
pre-determined crystal field environment. 

Appendix A. All the required matrix elements for the Hamiltonian of Eq. (8) 

(a) The matrix elements for the W' irreducible representation. 

= C,(Aa) K, G(VO) ~ 6 6 + ~  [5As + ~/3 Bs] 

< W'~'l ~1W'~'> = < W'q/I ~1W'o,'> 

C,(V1) [a s _4Bsl + ~iEs 

{ w'  ~'1 ~ 1  w'4,') = < w'x'l ~e~oL w',o') 

c,(v2)[A,+,/SB, I+c~(u~) , ~  
= .f7 L2 10 d 2 ~  EJ 

( w'~'l ~ol  w'x')  = -< w'4,'[ ~ol w'o,') 

(w'~'l ~ 1  w'q/> = -< w'~ ' l~ l  w',o'> 

= c*(ux)--~ cy(vl)~66 B,+ ~' ;415 

< w'~'lx~l w'~'> = < w'4/I ~e~l w'q/> 

Ks Cs(__~_VO) [Aj + 3.,/3Bs] 
= G(Aa) ~-~ 24105 

Cs( V1)41-~ [',~As + 2Bs]- Cs( UA ) 



Environment of approximately icosahedral symmetry 

( W'v'l~gl W'x'> = - (  W'4,'l ~gl  W'q/) 

C~(V2)i . -  Ej 
~ 1 ~  [343As - Bj]+ C*(OK) 2~6" 

( w ' ~ ' l ~ b l  w'~ '> = < w'x'l~'d w'x'> = G(A~)~66+~55143Bj  - 2Ar] 

(b) The matrix elements for the U' irreducible representation. 

< U'K'I ~gl  u'~'> = ( U'~'I ~gl  U'~'> 

_ Cj(Aa)K'rq Cj(VO)Dj 

2 2~  

(u,,l~glu,a,)=<u,,l~Jiu,r Cj(VI)Dj 

G(V2)iD, 
( u' , , ' l  gegl u'~,') = - (  u',~ '1 ~egl u', , ' )  

,s 

(u' ,vl  a~gl u',v) = (u',~'l ~gl  u',~') 
G(Aa)K ' s  G(VO)Dj  

= _ _  

2 2~ 

(c) The reduced matrix elements, (J'W'I[F[[J'W'), for j , = 5  to ~- 
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R M E  ~ 2 2 l~ 2 2 2 

1 -13 
A 2 1 ~ (2) 1/2 5(77)1/2 

a 6 0 2 \ 1-~] 5 \~-3]  

3 6 \22]  3 \ ~ ]  

86 o 2 \1 -~ /  o 

E 4 - -  
3 3 \ I 1 ]  3 \715] 

E 6 0 \ 143] \ 7 1 5 ]  

K 6 0 2(13)1/2 \ 6 5 /  

-31 
(1001) 1/2 

- 9 (  15'~ 1/2 

12(~43)1/2 
7 

0 

-10 
3(286) 1/2 

5 
2(221) 1/2 
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RME ,3 ,~ 2 2 

-43 (3  ],/2 
A2 ~ -  \ ~ ]  

3 (  t5] '/2 
A4 14 \4862] 

-713( 3 ~1/2 
A6 5 \ ~ ]  

-27 
B2 14(26) 1/2 

-227( 5 ~,/2 
B4 ~ \ 4 ~ ]  

195 
B6 (646 646) 1/2 

-46 
E4 3(4862),/2 

-24 
E6 (230 945) I/2 

37( 6 "~,/2 
Ko Z \ 

I 1107+341 (11") I/2~ 
140(17) ./2 ( -'2-\7"1] ) 

1 (  5__~'/2~858• ~ 
56 \12 597] [ \71] J 

-1 [308 :t: 323 (11'~ U2"~ 
20(8398) ./2 \7"1] J 

1(3~1/z111.4_51(11~'/2 ~ 
28 \17] [ "2- \~]  J 

1 ( 5 ~,/2{146:~1165 (7~)'/2} 
5 ( 429 ~,/2 •  
4 \45 866] 

1 [ 
6(4199)U 2 67q:170\71] J 

1( 21 ~ '/2 (11• (11~ '/2 ~ 

2(461 890) I/2 121 • 

The reduced matrix elements (RME) are in units of (J'I[YJI [J') 
E2, K 2 and K 4 are all zero 

(d) The reduced matrix elements, (J' U' I [FI IJ '  U') ,  fo r  J '  = 9 to  

RME 9 ,1 13 15 T T T 

2 ( 3 )  1/2 17 __6(2) 1/2 1 (51) 1/2 
D2 5 H (3003) ./2 5\91] 10 \7-]  

-6 ( 10 ~1/2 (110 x~ '/2 --11 ( 5 ~ 1/2 
04 (143) ./2 - - \ 1 ~ ]  \1547 ] ~--  \29 393] 

1(42"] 1'2 4(  35 ~ " '  -187( 2 ~x,2 11( 21 ~,,2 
D6 5 \143] - \7~-93] 5 \ 4 6 ~ ]  5 \ 8 ~ ]  

(3~1/2 _(_2_2~1/2 -33 -11(  33 "~,/2 
K~ - \ ~-~] \663] (146 965) uz 2 \ 2--ff~] 

The reduced matrix elements, RME, are in units of (J']IYj] IJ') 
K~, and K~, are all zero 

Appendix B. The list of Cj(Ua)  coefficients for J = 2 ,  4 and 6 

J=2 
C2(Aa) = C2(UK) = C2( UA ) = 0 

-'f3 2 C2(V2 ) = ~ s i n  flexp(-/2~) 
242 
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C2( VI ) = ~ sin fl cos/3 exp ( -  ier) 

C2(V0) = (3 cos 2/3 - 1)/2 

J = 4  

C4(Aa) = 0 

C4(  U/(  ) - X / 7 s i n 2 f l { s i n f l c o s / 3 " e x p ( - i 3 a ) - i ( 7 c o s 2 f l - 1 ) e x p ( i 2 a ) }  

- , /7  
C4( UA ) = ~ 3  sin/3 { i sin /3 exp ( i4a )  - cos/3 (3 - 7 cos 2/3 ) exp ( -  ia)} 

- 1  2 
C4(V2) = ~ 6 6  sin /3 { 14i sin/3 cos/3 exp ( i 3 a ) +  (7 cos 2 / 3 - 1 )  exp (- i2ot)} 

- 1  
C4( V 1 ) = 8x/~ sin/3 {7 sin 3/3 exp ( i4o~ ) - 8 i cos/3 (3 - 7 cos 2/3 ) exp ( -  iol ) } 

C 4 ( V 0 )  = (35 COS 4 /3 -- 30 cos 2/3 + 3)/8 

J = 6  

- "J-H s C6(Aa) = ~ {42 sin /3 cos/3 sin 5 a - 231 cos 6/3 + 315 cos 4/3 - 105 cos 2/3 + 5} 

"/~ sm 2 C6(UK)=  ~ -  " f l { 4 s i n / 3 c o s / 3 ( 3 _ l l c o s 2 f l ) e x p ( _ i 3 a )  

+ i(33 cos'*/3 - 18 cos 2/3 + 1) exp ( i2a)} 

C6(UA) =]7"0 sin/3 {il I sin s/3 exp ( - i 6  a ) +  i6 sin 3/3 (11 cos 2/3 - 1) exp ( i4a )  

+ 8 cos/3 (33 cos4/3 - 3 0 c o s  2/3 + 5) exp ( - i a  )} 

C6(V2) = ~ sin /3{i sin/3 c o s / 3 ( 3 -  11 cos 2/3) exp ( i3a )  

- (33 cos 4/3 - 18 cos 2/3 + 1 ) exp ( -  i2a )} 

(76( V 1 ) = 1 ~  sin/3 { -  11 sin 5/3 exp ( - i6a ) + 9 sin 3 13 ( 11 cos 2/3 - 1 ) exp ( i4oe ) 

- i2 cos/3 (33 cos 4 fl -- 30 cos 2/3 + 5) exp ( -  ia)} 

- , / ~  
C6(VO) = ~ {33 sin 5/3 cos/3 sin 5 ol + 231 cos 6/3 - 315 cos 4/3 + 105 cos 2/3 - 5} 
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Appendix C. The non-zero magnetic field interaction matrix elements in terms of 
the direction cosines I, m, and n and the reduced matrix elements 

(a) The matrix elements  for the W' irreducible representat ion.  

a=(W' l lT l l lW' ) ;  b=(W' l l5Td lW' )  

( W'r'lB'l W"~') = - (  W'o,'ln'l W'o/) = n / . / ~ {  - . / S a  + b/5} 

< W'r'l B'I W' . ' )  = -4 W"P'IB'I W'o,') = - ( i l  + rn)/x/-42{a + b/2x/5} 
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( W',dn' I W'~') = ( W',,'ln' I W'o>') = (1 + im)d-7b/2,/~ 
( W"/In'l W'<,,') = -in~b/5vr6 I 

(W',/IB'I w'~)  = - (  W'@'ln'l W'@') = -,,(47<#Go+ bl../-~) 
(W'~' ln ' l  W'~ ' )  = -(W'x'IB'I W'~')  = (i l  + m){-2al./-i-~+ b12GT) 

( W'~'ln'l W'@') = - (  W'x'IB'I W'X) = n(-al2.12-~+d2bld-~) 

< W'~'IB'I W'x'> = (1 i im){47al., l~+ b1.,I-42}. 

(b) The matrix elements for the U'  irreducible representation 

c---(u'llTIIU'> 

( u'K'l B'I u'K'> = - (  U',,'IB'I U',,') = -43cn12d7 

( U ' , < ' I B ' I  U ' , t ' )  = ( U ' ~ , ' I B ' I  U ' ~ ' )  = -c ( i l  + m)1247 

(U',t'IB'IU'a')=-(U'~'IB'I U'~')=-cn/2d'~ 
( U',VlB'I U'~')= c( l -  im )l ~ .  

(c) The reduced matrix elements for the magnetic field interaction, given in units of gx. 

J ' -value  (w'ILT, IIw'> (w' i l5Zll l  W> (U'IIT, IIU'> 

5- - l d i - b 7 / d 7  0 2 

-~ 4 T 0 ~ / G  ~ / G  - 
9 17v/3/-f~ -lO~/J7 947/47 

' - '  - J ] S J , , ~ 4 4  12d6/4~ 47147 
2 -31U3_/x/70 - 1547/./77 -747 /~ /7  
2 x/3{ 14 • 341 x /11 /x /~} /2x/~  �9 45~/~ /2  9 x ~  - 17x/3/x/5 

R. M. Golding et al. 

R e f e r e n c e s  

1. Judd, B. R.: Proc. Roy. Soc. (London),  A232, 458 (1955) 
2. Tinsley, J.: J. Chem. Phys. 39, 3503 (1968) 
3~ Beincke, J., Delgaudio, J.: Inorg. Chem. 7, 715 0968)  
4. Dexter, D. D., Silverton, J. V.: J. Amer. Chem. Soc. 90, 3589 (1968) 
5. Casellato, U., Vigato, P. A.: Coord. Chem. Rev. 36, 183 (1981) 
6. Edmonds,  A. R.: Angular momentum in quantum mechanics. Princeton New Jersey: Princeton 

University Press 1960 
7. Golding, R. M.: Molec. Phys. 26, 661 (1973) 
8. Earney, J. J., Finn, C. B. P., Najafabadi,  B. M.: J. Phys. C 4, 1013 (1971) 

Received June 26, 1984 


